An Efficient Optimal Eighth-order Iterative Method for Solving Nonlinear Equations
نویسندگان
چکیده
In this paper we established a new eighth-order iterative method, consisting of three steps, for solving nonlinear equations. Per iteration the method requires four evaluations (three function evaluations and one evaluation of the first derivative). Convergence analysis shows that this method is eighth-order convergent which is also substantiated through the numerical works. Computational results ascertain that our method is efficient and demonstrate almost better performance as compared to the other well known eighth-order methods.
منابع مشابه
A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS
In this paper, we present a new iterative method with order of convergence eighth for solving nonlinear equations. Periteration this method requires three evaluations of the function and one evaluation of its first derivative. A general error analysis providing the eighth order of convergence is given. Several numerical examples are given to illustrate the efficiency and performance of the new ...
متن کاملA NOTE ON "A SIXTH ORDER METHOD FOR SOLVING NONLINEAR EQUATIONS"
In this study, we modify an iterative non-optimal without memory method, in such a way that is becomes optimal. Therefore, we obtain convergence order eight with the some functional evaluations. To justify our proposed method, some numerical examples are given.
متن کاملAN ITERATIVE METHOD WITH SIX-ORDER CONVERGENCE FOR SOLVING NONLINEAR EQUATIONS
Modification of Newtons method with higher-order convergence is presented. The modification of Newtons method is based on Frontinis three-order method. The new method requires two-step per iteration. Analysis of convergence demonstrates that the order of convergence is 6. Some numerical examples illustrate that the algorithm is more efficient and performs better than classical Newtons method and ...
متن کاملSolving systems of nonlinear equations using decomposition technique
A systematic way is presented for the construction of multi-step iterative method with frozen Jacobian. The inclusion of an auxiliary function is discussed. The presented analysis shows that how to incorporate auxiliary function in a way that we can keep the order of convergence and computational cost of Newton multi-step method. The auxiliary function provides us the way to overcome the singul...
متن کاملThree-step iterative methods with eighth-order convergence for solving nonlinear equations
A family of eighth-order iterative methods for solution of nonlinear equations is presented. We propose an optimal three-step method with eight-order convergence for finding the simple roots of nonlinear equations by Hermite interpolation method. Per iteration of this method requires two evaluations of the function and two evaluations of its first derivative, which implies that the efficiency i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013